When Moore’s Law was first coined, the most advanced computers were large, mainframe-type machines that took up entire rooms and were best suited for narrow tasks done one at a time.

Today we have smart phones that let us carry around the internet in our pocket, supercomputers that have beaten Jeopardy! and chess champions, and even experimental cars that drive themselves. Technologists entertain visions of even deeper integration of artificial intelligence into our lives as computer technology advances, such as robots performing surgery.

Transistors, tiny on/off switches that regulate electric current, are the workhorses of modern electronics. They’re to computers what synapses are to the human nervous system. They have become faster over the years thanks to new materials and manufacturing techniques, but Intel’s latest advance is a redesign of the transistor itself.

A chip can have a billion transistors, all laid out side by side in a single layer, as if they were the streets of a city. But chips have had no “depth”—until now. On Intel’s chips, the fins will jut up from that streetscape, sort of like bridges or overpasses.

The fins give the transistor three “gates” to control the flow of electric current, instead of just one. That helps prevent current from escaping. There’s a limit to how much current a chip can take, and the new design allows more of that power to be spent on computing rather than being wasted.

Intel has been talking about 3-D, or “tri-gate,” transistors for nearly a decade, and other companies are experimenting with similar technology. Intel’s May 4 announcement is noteworthy because the company has figured out how to manufacture the transistors cheaply in mass quantities.

Other semiconductor companies argue that there’s still life to be squeezed from the current design of transistors, but Intel’s approach allows it to advance at least a generation ahead of rivals such as IBM Corp. and Advanced Micro Devices Inc.

Intel’s approach carries some risks, because the technology is untested on the mass market. But Doug Freedman, an analyst with Gleacher & Co., said Intel’s approach might actually reduce chip defects if the multiple gates make the transistors more reliable.

“Intel takes big gambles when it knows what it’s doing,” Freedman said.