The CAVE2 virtual world could change the way doctors are trained and improve patient care, Leigh said. Pharmaceutical researchers could use it to model the way new drugs bind to proteins in the human body. Car designers could virtually “drive” their new vehicle designs.

Imagine turning massive amounts of data — the forces behind a hurricane, for example — into a simulation that a weather researcher could enlarge and explore from the inside. Architects could walk through their skyscrapers before they are built. Surgeons could rehearse a procedure using data from an individual patient.

But the size and expense of room-based virtual reality systems may prove insurmountable barriers to widespread use, said Henry Fuchs, a computer science professor at the University of North Carolina at Chapel Hill, who is familiar with the CAVE technology but wasn’t involved in its development.

While he calls the CAVE2 “a national treasure,” Fuchs predicts a smaller technology such as Google’s Internet-connected eyeglasses will do more to revolutionize medicine than the CAVE. Still, he says, large displays are the best way today for people to interact and collaborate.

Believers include the people at Marshalltown, Iowa-based Mechdyne Corp., which has licensed the CAVE2 technology for three years and plans to market it to hospitals, the military, and in the oil and gas industry, said Kurt Hoffmeister of Mechdyne.

In Chicago, researchers and graduate students are creating virtual scenarios for testing in the CAVE2. The Mars flyover is created from real NASA data. The brain tour is based on the layout of blood vessels in a real patient.

Brain surgeon Ali Alaraj remembered the first time he viewed the brain using the CAVE2.

“You can walk between the blood vessels,” said the University of Illinois College of Medicine neurosurgeon. “You can look at the arteries from below. You can look at the arteries from the side. … That was science fiction for me.”

Would doctors process information faster with fewer errors using CAVE2? That’s the question behind a proposed study that would compare CAVE2 to conventional methods of detecting brain aneurysms and determining proper treatment, said Andreas Linninger, UIC professor of bioengineering, chemical engineering, and computer science.

The original technology, introduced in the early 1990s, was called CAVE, which stood for Cave Automatic Virtual Environment and also cleverly referred to Plato’s cave, the philosopher’s analogy about shadows and reality. It was named by former lab co-directors Tom DeFanti and Dan Sandin.

The second generation of the CAVE, invented by Leigh and his collaborator Andy Johnson, has higher resolution. The project was funded by the National Science Foundation and the Department of Energy.

“It’s fantastic to come to work. Every day is like getting to live a science fiction dream,” Leigh said. “To do science in this kind of environment is absolutely amazing.”