Strategy #2: Choose a project that can be accomplished within the presented time frame with reasonable expected outcomes.

An important aspect of these projects is the inter- and intra-group collaboration conducted both in class and outside of class. However, because of the demands of maintaining a science curriculum during class and some groups possibly waiting for the outcome of other groups before they can continue their work, student groups can connect via social media for online discussion or hold meetings after school to discuss progress, conduct trials, perform data analyses, and propose next steps. This underscores the basis of Strategy #1.

Presenting a project that is engaging and stirs the interest of the students makes it more palatable for students to advance their work within a group and pursue the overall objectives of the classroom project.

Strategy #3: Actively engage with each group, constantly assessing progress and promptly acting to troubleshoot potential issues and conflicts.

A significant advantage of PBL is the ability for students to work in a small-group setting, charged with either solving a problem or developing a novel solution. Working with other students to achieve similar goals can be a challenge—whether it be keeping the students on task without distractions from other students or social media, issues and conflicts that arise when one student is not invested in the group’s mission or resolving arguments.

I recommend asking for periodic progress reports from each group. This minimizes the possibility of a group not completing the project.

By implementing these strategies, you can provide your students with exciting, hands-on, technology-enabled PBL opportunities that will keep them engaged in STEM education and the learning process.

About the Author:

George Hademenos is a physics teacher at Richardson High School in Richardson, Texas. He was recently named a recipient of the 2018 Vernier/NSTA Technology Awards.