Physical manipulatives also support developmentally-appropriate play, and for young children, play is a foundation of learning. Toys like the KIBO robot or LEGO bricks are hands-on resources for imaginative play that help young students build critical problem-solving skills by engaging their imagination. For many children, the entry point to motivation is fantasy play or role play: programming a robot is about inventing a character, and building a structure is creating a setting for a story. Hands-on learning tools like blocks, boxes, and arts and craft materials also allow the child to explore new concepts through concrete play.

Inspiring experimental learning

Speaking of imaginative play, positioning a young student as an explorer or inventor can kick students’ imaginations into gear. Educators or caregivers can give students a learning experience that doesn’t direct them to one possible solution, but encourages them to tackle a problem with open-ended materials. Playful learning is about encouraging children to take on an attitude of inquiry and investigation and to invent their own solutions to problems educators pose for them, without directing them to one “right answer.”

Open-ended, exploratory experiences should be at the heart of STEAM education for young children. Some of the most effective things educators or caregivers can do is give students time and space with a set of materials that don’t have one obvious way to work.

The engineering design process, a staple of STEAM education, provides a framework to clearly define and solve problems from beginning to end. The process acknowledges the importance of experimentation and testing alongside planning; for young children, “planning with your hands” is common as they learn to use new materials and techniques in an open-ended way.

Open-ended STEAM experiences are actually a great fit for distance-learning activities in students’ homes, where blocks of open time are perhaps more available than in the classroom. For example, educators and caregivers can give children a range of common recycled craft materials like pieces of cardboard, sticks, string, and pipe cleaners, and then ask them to create a bridge between two tables that’s strong enough to carry a toy truck. Just allowing them to experiment with the materials to reach a goal can give them room to work around problems until they succeed on their own time. How does the bridge fail, and how can they make it stronger? Without a specific recipe to follow, children can explore the materials and learn from the process itself.

Supporting collaboration at a distance

Often, the final step in the engineering design process is sharing. One of the most powerful ways of making learning meaningful for children is to give them the opportunity to explain and present their creations to others. They can share their interests and discoveries with their peers and become conscious of the “why” behind their decisions when they see how the projects they’ve created have an impact on their peers.

3 strategies to teach STEAM in a blended environment

Even in a distance learning environment, students can work on something on their own at home and then share the finished product with a small peer group. This can be done through online meetings where children’s work can be showcased, and peers and teachers can share their feedback. No matter what the fall looks like, I hope that we hold onto the notion that what young students do is important to their peers and has a communicative power. It’s something we really don’t want to lose during this time of distance learning, when students can feel isolated.

There’s no doubt that students will spend some time learning on screens this fall, but hands-on experiences that take them off the screen and allow them to engage in learning with physical manipulatives are as important as ever.

About the Author:

Jason Innes is the Director of Curriculum, Training, and Product Management at KinderLab Robotics, where he supports teachers, parents, and educators learning to integrate KIBO into meaningful and playful STEAM experiences for their students. He has presented on robotics, early coding, and STEAM integration at numerous conferences and workshops. He has a BA in Media Studies from Harvard University and a graduate certificate in Early Childhood Technology from Tufts University. He can be reached at jason@kinderlabrobotics.com.