What’s more, teaching physics to high school freshmen allowed them to see practical uses for algebra and apply those skills to solving real problems right away.
As it happened, that was a huge benefit, because it answered the “why” question at the heart of so much of U.S. education. Once Goodman started teaching physics to ninth graders, he no longer heard kids say, “When am I ever going to use algebra?”
The classroom that Goodman was assigned to had no desks or tables, only a few computer workstations, because it was assumed the students would be using the space to build things. So, before classes began that first year, he took some of the small round tables from a faculty lounge and rolled them down the hall to his room. He also took some chairs from the cafeteria.
“It was by pure chance, and not any desire to follow Vygotsky—but it turned out that I had created a social constructivist classroom,” he said. “I taught them some content briefly for the first few minutes of class, and then the students applied this content to solving new problems they hadn’t seen before, working together in small groups.”
He added: “Seventy-five percent of my class was kids just discussing science. It turns out that works really well, because kids love to argue about stuff.”
The combination of Goodman’s pedagogical approach and the fact that students were learning algebra and physics simultaneously made his course enormously popular. Soon, students in the school’s other career and technical fields were asking administrators if they could take physics in the ninth grade—and by 2003 every freshman was taking the course.
What’s more, many of these students went on to take AP physics, with a remarkable pass rate.
By 2005, the school’s students were taking and passing the AP physics exam at a rate that was 13 times the state average. The percentage of students from this voc-ed school taking AP physics was easily No. 1 in the state, more than double the next-highest school’s percentage.
State leaders wanted to replicate this success throughout the state’s high schools. Around the same time, the New Jersey Education Association wanted to prepare its members for the new teacher accountability measures coming down the pike. These factors led to the formation of the New Jersey Center for Teaching and Learning, a nonprofit research and development organization, and Goodman became its executive director.
“One of our goals is to get schools to stop teaching science backward,” he said. “The only reason we teach biology, then chemistry, then physics is because of a decision made in the 1800s.” But as Goodman proved, teaching physics while students are just learning algebra sets them up for success in all of the STEM disciplines, while making science and math more meaningful. And when students understand physics, they can explore other science topics at a level of sophistication that goes beyond simply memorizing facts.
The NJCTL also creates free and open instructional materials and trains teachers in student-centered instruction. Its training extends to schools in Africa and elsewhere, and the center also has trained 197 veteran educators to become physics teachers over the last seven years.
The approach that Goodman pioneered has led to higher participation in AP physics among minority students than the national average, helping to close the STEM achievement gap. What’s more, Bergen County Technical High School is now ranked 28th in the nation and has had several students accepted into MIT. “Every single one of them was rejected by the math and science academy down the street,” Goodman said.
He concluded: “I’m not saying that all of these students will become physicists. But we want every student to be able to become a doctor if they want to, for instance—and they can’t do that if they never develop an interest in science.”
- TC- What student choice and agency actually looks like - November 15, 2016
- What student choice and agency actually looks like - November 14, 2016
- App of the Week: Science sensor meets your smartphone - November 14, 2016