3 ways to help students think and act as scientists

An award-winning teacher shares how he gets students excited about science

I enjoy challenging students to engage in hands-on scientific inquiry. In fact, I’m always telling my students and colleagues that I don’t want our students to think and act like scientists. I want them to think and act as scientists.

Here are three things we can do to make that happen.

1. Create an environment that helps students take ownership of their learning.
To effectively teach science, it’s vital to create an environment where students can ask questions and make discoveries, rather than simply being told what they need to know to do well on a test. Creating this environment requires teachers giving up some control, which can be scary. The rewards, however, are worth the risk.

I begin each activity with a driving question. I model how the equipment will be used; we discuss how to collect meaningful, replicable data; and then they get to work (usually in pairs or teams of three).

When we are in lab mode, which is at least half of the time, I am there to coach students but not to do the lab for them. If they get frustrated because an experiment isn’t working, we talk about why that might be happening but I don’t solve the issue. Instead, I give them space so they have room to stumble and figure out what they need to do to move forward. This helps them learn to identify and address problems on their own.

(Next page: More ways to get students excited about science)

2. Make it easy to collect data so students can spend more time on inquiry and analysis.
I want to make it as easy as possible for students to collect data so they can focus on what’s next, which is making sense of the data and putting together a robust, meaningful scientific argument. Yet, I have met many teachers over the years who think that getting data is difficult—and that it should be difficult. Lab time should not be consumed by the technical challenge of setting up sensors. We need to expose teachers to the right tools so they can see how easy, intuitive, and quick data collection can be.

In my classes, we use PASCO sensors and SPARKvue software for data collection and analysis. We start the year with wireless temperature sensors, looking at heating curves and phase changes of water. Then we move to CO2 sensors and do some respiration work. We use motion sensors to plot graphs of one-dimensional motion and teach some simple kinematics. I also take low-tech, high-touch activities and bring in sensors to make them more robust and quantitative. For example, we do a lab that uses the floating disk leaf assay as a vehicle for exploring photosynthesis in plants. My students use sensors to measure light intensity as well as the pH, conductivity, and temperature of the solution.

Beyond getting students to see the patterns in the data they collect, I’m also working to get them to take aggregate data—or class data sets—from their sensor-based studies and do a meaningful analysis on it. Recently, as part of an investigation that involved using a pressure sensor to examine enzyme activity rates in yeast, students presented their research as a scientific talk on a question of their own design. It was exciting to see them take the rate calculations, average them, compile them, and then run a regression analysis to determine whether or not independent variables had a significant impact on the results. These are ninth and 10th graders doing that!

3. Expect more from students and they’ll do more.
When students enter my class for the first time, I explain that I’m not looking for them to regurgitate information I give them. Instead, I will tell them what I’m looking for, but they have to use their own creativity and insights to deliver their own scientific arguments. This approach can catch students off guard. Many feel frustrated for the first few weeks of class because they can’t sit there and passively absorb information. They have to engage in what they are learning. They have to perform real experiments and investigations and take part in the scientific process. This takes longer than reading about an investigation, and some students are initially wary of this slower pace.

As they make their way through it, I remind them that I’m not trying to make things difficult or obfuscate ideas; I’m simply giving them an experience of what doing real science and research is like. And they rise to the challenge. By November, they’re used to an inquiry-based environment. They no longer come to class waiting to be told what to do. They get with their partner, figure out what they need, set up sensors, and begin collecting and analyzing data. They do this without me having to say a word. In my experience, when we give students opportunities to take more responsibility for their learning, they do.

Changing the way students think about science
In my classroom, I expect to see students being scientists and doing science. What’s nice is that when it comes time for exams, students aren’t afraid of working with data they’ve never seen before because they do this all year. If we can get more teachers to release control and allow students to do more project-based learning and digital data collection, and challenge them to take more ownership of what’s happening in the lab, science education will be better for it. Plus, when we create an environment for hands-on learning, students realize that science is actually a really interesting way to make a living.

Sign up for our K-12 newsletter

Newsletter: Innovations in K12 Education
By submitting your information, you agree to our Terms & Conditions and Privacy Policy.

Want to share a great resource? Let us know at

eSchool News uses cookies to improve your experience. Visit our Privacy Policy for more information.